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Programming and frameworks for ML

Introduction to NoSQL 
Databases
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About Me

 Big Data Consultant at Santander / Big Data Lecturer
● More than 20 years of experience in different environments, 
technologies, customers, countries ...

● Passionate about data and technology
● Enthusiastic about Big Data world and NoSQL

daniel.villanueva@immune.institute
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Objectives

● Tour of different database models
● Comparison of a relational database with NoSql 
databases
● Key/Value
● Documents
● Column oriented
● Graphs
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Agenda

● Material
● Use case
● Relational Databases
● NoSQL
● Riak
● MongoDB
● Apache Cassandra
● Neo4j
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Material - Virtual Machine

http://localhost:8001/

http://localhost:3100/

http://localhost:7474/

http://localhost:8098/

http://localhost:2222/ learner/learner

4.2.5

3.11

2.2.3

3.5.11 

12.2 

https://github.com/dvillaj/NoSQL-box

2.2.9

http://localhost:8001/
http://localhost:7474/
http://localhost:8098/
http://localhost:8098/
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Material - Virtual Machine
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What are databases?
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What are databases?

"A database is a storehouse that allows us 
to store large amounts of information 
in an organized manner so that we can 

easily find and use it."
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Agenda

● Material
● Use case
● Relational Databases
● NoSQL
● Riak
● MongoDB
● Apache Cassandra
● Neo4j
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Case Study - Twitter
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Case Study – Tarjetas Black
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Agenda

● Material
● Use case
● Relational Databases
● NoSQL
● Riak
● MongoDB
● Apache Cassandra
● Neo4j
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Elements of a relational database

● Tables
● Fields (or Columns)
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Elements of a relational database

● Records (or Rows)
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Elements of a relational database

● Relationships between tables
● Primary Keys
● Foreign Keys
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Elements of a relational database

● Views
● Transactions
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Elements of a relational database

● Indexes
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Elements of a relational database

● SQL Language
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ACID properties associated to a 
Relational database
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PostgreSQL - HandsOn
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Problems??
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Impedance Mismatch
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Rigid schemes
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Rigid schemes

● You cannot load the information until you create the 
structure in the database

● You cannot create the structure until you understand the 
schema to be stored in the table

● What happens if the data changes?
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Volume
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Scalability
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Scalability
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Variety of information
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Structured Data
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Semi-Structured Data
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Unstructured Data
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Velocity

Tweeting

https://www.tweetping.net/
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Velocity
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Agenda

● Material
● Use case
● Relational Databases
● NoSQL
● Riak
● Apache Cassandra
● MongoDB
● Neo4j
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NoSQL

NoSQL is a broad class of database management 
systems that differs from the classic model of the 
relational database management system

• They usually scale well horizontally
• Do not use SQL as the main query language
• Stored data does not require fixed structures such as 

tables
• Normally do not support JOIN operations
• Not fully guaranteed by ACID 
• Many of them are Open Source
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A little bit of history

1970 1980 1990 2000 2010

Codd's 
Relational 
Model

BigTable 
Paper

Dynamo
Paper

Term
NoSQL

Howard Dresner 
proposes the term 

Business 
Intelligence
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Types of NoSQL databases

Key / Value Columnar Documents Graphs
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Size vs. Functionality

> 90% of use cases
Relational

Key - Value

Columnar

Documents

     Graphs

Functionality

Scalability

(*) Billions of nodes 
and relations
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Vertical and horizontal scaling

CLUSTER

NODE

VERTICAL SCALING HORIZONTAL SCALING
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CAP Theorem

● Requirements for distributed databases
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CAP Theorem
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Agenda

● Material
● Use case
● Relational Databases
● NoSQL
● Riak
● Apache Cassandra
● MongoDB
● Neo4j
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Riak

● Developed by Basho Technologies in Erlang
● Inspired by Amazon Dynamo
● Horizontal Distribution - Fault Tolerant 
● Prioritizes availability - Tunable consistency
● No master node - No single point of failure
● Querys - Provides a REST API over HTTP
● Drivers in multiple languages - Java, Python, Ruby, etc.
● Storage options - Memory, disk or both.
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API REST
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Key and Value

● It's the most basic structure
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Key and Value

● For example:
● Key: Address
● Value: Tenant
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Buckets

● They allow to separate the same key according 
to a context

● Example: Streets
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Data distribution in Riak

● Riak is kept available by distributing the data 
between different nodes

● There are 2 styles of layout ...
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Data distribution in Riak

● Replication
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Data distribution in Riak

● Partitioned



51

Data distribution in Riak

● Riak uses Replication + Partitioning
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Hash function



53

The Riak Ring – The Cluster
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The Riak Ring – The Cluster
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Hash function
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The Riak Ring – Replication

“favorite”
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The Riak Ring – Replication

“favorite”

Replicated 
to vnodes

Replicated 
to nodes
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Consistence vs Disponibility
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N/R/W

● N - Number of nodes in which the information is 
replicated
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N/R/W

● W - Number of nodes to be written to before the 
operation is considered successful
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N/R/W

● R - Number of nodes to be read from before 
returning the value
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Riak Data Types 
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Handling conflicts can be complex

https://riak.com/products/riak-kv/riak-distributed-data-types/index.html?p=10947.html
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Handling conflicts can be complex
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Handling conflicts can be complex
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Riak Secundary Index
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CRUD operations in Riak

● Inserting / Changing a key
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CRUD operations in Riak

● Reading a key
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CRUD operations in Riak

● Deleting a key
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Riak - HandsOn
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Use Cases

● Simple applications requiring high performance 
in read/write operations

● Applications that need the database to be 
always available

● Serving ads to web / mobile applications
● User preferences
● Session Storage
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Agenda

● Material
● Use case
● Relational Databases
● NoSQL
● Riak
● Apache Cassandra
● MongoDB
● Neo4j
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Apache Cassandra

● Developed in java by Facebook and donated to the 
Apache Foundation in 2008

● It is based on a key/value model by storing several 
columns per key.

● Inspired by Amazon's Dynamo (Same as Riak) and 
Google's BigTable (Column families)

● There's no central controller. No single point of failure
● Querys: CQL Language - Similar to SQL
● Compatible with Hadoop and Spark
● Supports multiple data centers
● Linear scalability
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Architecture - Writing (W = 3)
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Architecture - Reading
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Cassandra Cluster Multiple DataCenters
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Cassandra Cluster Multiple DataCenters
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BigTable

● Data is stored in tables (Column Families)
● Tables are stored in separate databases (Keyspaces)
● Every table must have a primary key (Partition Key)
● Additionally a table can have composite keys
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Remembering the Key - Value model

Key Value

TIMESTAMP
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BigTable

Key Value

Column 1 Column 2 Column 3

TIMESTAMP

Value

TIMESTAMP

Value

TIMESTAMP
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Key Value Value Value

Column 1 Column 2 Column 3

Family of Columns = TABLE

Partition KEY

TIMESTAMP TIMESTAMP TIMESTAMP

BigTable
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Key
Value Value Value

Composite Key Column 2 Column 3
Partition KEY

Value Value Value

Composite Key Column 2 Column 3

TIMESTAMP TIMESTAMP TIMESTAMP

TIMESTAMP TIMESTAMP TIMESTAMP

BigTable
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Partition Key vs Composite Key
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Cassandra Query Language CQL

● It looks like SQL but is much more limited
●No JOINS
●No GROUP BY
●No ORDER BY
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Cassandra - HandsOn
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Use Cases

● Applications requiring very high real-time writing 
capabilities

● Business Intelligence systems that require a very fast 
database reading

● Decentralized applications that need to store large 
amounts of information

● Smart cities. Sensors and monitoring
● Content Delivery Network (CDN) - Highly distributed 
static content servers



87

Agenda

● Material
● Use case
● Relational Databases
● NoSQL
● Riak
● Apache Cassandra
● MongoDB
● Neo4j
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MongoDB

● It is a document-oriented database (Key Collections / 
value)

● It is very flexible in structuring the data
● Querys: Javascript with its own API based on high 
capabilities for information querying

● It has geospatial characteristics
● Prioritizes consistency over availability
● Master / Slave type replication
● Scale horizontally thanks to Sharding
● There is a connector for BI tools
● Compatible with Hadoop and Spark
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Nomenclature
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Replication - Scale the readings
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Replication
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Replication
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Replication
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Sharding- Scale the scriptures
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Complete map
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Document

Key 1 Value 1

Key 2 Value 2

Key 3 Value 3

Key 4 Value 4
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Document

Key 1

Value

Key 2

Value

Key 3

Value

Key 4

ValueDocument
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Collection

Key 1

Value

Key 2

Value

Key 3

Value

Key 4

ValueDocument 1

Value Value Value ValueDocument 2

Value Value Value ValueDocument n
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Collection

Key 1

Value

Key 2 Key 3

Value

Key 4

ValueDocument 1

Value Value ValueDocument 2

Value ValueDocument n
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Documents

● The documents correspond to native data types in most 
programming languages.

● The ability to include other documents and arrays within 
the documents reduces the need for joins.

● Dynamic schemes allow support for any data structure in 
a collection 
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Document
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CRUD operations

● Data insertion
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CRUD operations

● Querys
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CRUD operations

●Ordered queries
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CRUD operations

● Queries with projection
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CRUD operations

● Update



107

CRUD operations

● Deletion
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CRUD operations

● Aggregation - Equivalent to GROUP BY

https://docs.mongodb.com/manual/reference/sql-aggregation-comparison/
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Converting from SQL to MongoDB

https://www.google.com/search?q=sql+to+mongodb
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Converting from SQL to MongoDB

https://docs.mongodb.com/manual/reference/sql-comparison/

https://docs.mongodb.com/manual/reference/sql-comparison/
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Schematic design



112

Scheme design
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MongoDB Client

https://robomongo.org/download
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MongoDB - HandsOn
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Use Cases

● Any application that needs to use semi-structured data
● Applications with high volume of information
● Document and Content Management Systems
● Rapid development / Agile methodologies
● Machine-generated data (logs, sensors, etc.)
● It is not appropriate when there is more than one data 
center
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Agenda

● Material
● Use case
● Relational Databases
● NoSQL
● Riak
● Apache Cassandra
● MongoDB
● Neo4j
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Neo4j

● It is a network oriented database (stores information as 
nodes and relationships)

● Implemented in java in 2010
● Querys: Proprietary language called Cypher that allows 
you to explore connections between information

● REST Interface
● It is not necessary to declare a scheme
● Prioritizes consistency and availability
● ACID



118

Graphite Theory - Königsberg Bridges

Leonhard Euler 
1707-1783
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Graphite Theory - Königsberg Bridges
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Nodes and Relations
● A network is built the way people really think
● The nodes or vertices represent entities
● The edges represent relationships
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Properties
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Tags

Person

Person

Book
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Searching for information

● Locate a node and explore other nodes through their 
relationships
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Searching for information

● Locate a node and explore other nodes through their 
relationships

● or we can identify patterns

Alice

John

Pedro
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Patterns

Alice

John

Pedro
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Patterns

Alice

John

Pedro
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Algorithms - The shortest path

Alice

John

Alex

Sara
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Algorithms - PageRank
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Cypher
● Language with a philosophy similar to SQL
● Allows you to create nodes and/or relationships, maintain 
them or delete them

● Finding patterns
● Execute algorithms implemented in the DB
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Neo4j
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Neo4j - Visualization
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Neo4j - HandsOn
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Use Cases

● Optimal for applications that need to look for 
relationships in information

● Social networking
● Fraud detection by identifying patterns
● Real-time recommendations
● Data center management - devices, users, etc.
● Master Data Systems Management
● Identity and access management
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Panama's papers
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Panama's papers
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Panama's papers
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Panama's papers



138

Einstein's Riddle
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Einstein's Riddle

● This seemingly simple Einstein's riddle is based on a 
number of considerations and one question.

● These are about a group of five people of different 
nationalities, with five different pets, consuming a certain 
brand of tobacco, drinking a certain drink and living in a 
different house entirely in each case.

Who owns the fish?
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Einstein's Riddle

● The Englishman lives in the red house.
● The Swede has a dog.
● The Dane drinks tea.
● The Norwegian lives in the first house.
● The German smokes Prince.
● The green house is immediately to the left of the white 
one.

● The owner of the green house drinks coffee.
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Einstein's Riddle

● The person who smokes Pall Mall breeds birds.
● The owner of the yellow house smokes Durnhill.
● The man who lives in the house downtown drinks milk.
● The man who smokes Blends lives next door to the man 
who has a cat.

● The man who has a horse lives next to the man who 
smokes Dunhill.

● The man who smokes Bluemaster drinks beer.
● The man who smokes Blends is a neighbor of the man 
who drinks water.

● The Norwegian lives next door to the blue house.
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THANKS FOR YOUR ATTENTION
Daniel Villanueva Jiménez

daniel.villanueva@immune.institute

@dvillaj
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