
1

Programming and frameworks for ML

Introduction to NoSQL
Databases

2

About Me

 Big Data Consultant at Santander / Big Data Lecturer
● More than 20 years of experience in different environments,
technologies, customers, countries ...

● Passionate about data and technology
● Enthusiastic about Big Data world and NoSQL

daniel.villanueva@immune.institute

3

Objectives

● Tour of different database models
● Comparison of a relational database with NoSql
databases
● Key/Value
● Documents
● Column oriented
● Graphs

4

Agenda

● Material
● Use case
● Relational Databases
● NoSQL
● Riak
● MongoDB
● Apache Cassandra
● Neo4j

5

Material - Virtual Machine

http://localhost:8001/

http://localhost:3100/

http://localhost:7474/

http://localhost:8098/

http://localhost:2222/ learner/learner

4.2.5

3.11

2.2.3

3.5.11

12.2

https://github.com/dvillaj/NoSQL-box

2.2.9

http://localhost:8001/
http://localhost:7474/
http://localhost:8098/
http://localhost:8098/

6

Material - Virtual Machine

7

What are databases?

8

What are databases?

"A database is a storehouse that allows us
to store large amounts of information
in an organized manner so that we can

easily find and use it."

9

Agenda

● Material
● Use case
● Relational Databases
● NoSQL
● Riak
● MongoDB
● Apache Cassandra
● Neo4j

10

Case Study - Twitter

11

Case Study – Tarjetas Black

12

Agenda

● Material
● Use case
● Relational Databases
● NoSQL
● Riak
● MongoDB
● Apache Cassandra
● Neo4j

13

Elements of a relational database

● Tables
● Fields (or Columns)

14

Elements of a relational database

● Records (or Rows)

15

Elements of a relational database

● Relationships between tables
● Primary Keys
● Foreign Keys

16

Elements of a relational database

● Views
● Transactions

17

Elements of a relational database

● Indexes

18

Elements of a relational database

● SQL Language

19

ACID properties associated to a
Relational database

20

PostgreSQL - HandsOn

21

Problems??

22

Impedance Mismatch

23

Rigid schemes

24

Rigid schemes

● You cannot load the information until you create the
structure in the database

● You cannot create the structure until you understand the
schema to be stored in the table

● What happens if the data changes?

25

Volume

26

Scalability

27

Scalability

28

Variety of information

29

Structured Data

30

Semi-Structured Data

31

Unstructured Data

32

Velocity

Tweeting

https://www.tweetping.net/

33

Velocity

34

Agenda

● Material
● Use case
● Relational Databases
● NoSQL
● Riak
● Apache Cassandra
● MongoDB
● Neo4j

35

NoSQL

NoSQL is a broad class of database management
systems that differs from the classic model of the
relational database management system

• They usually scale well horizontally
• Do not use SQL as the main query language
• Stored data does not require fixed structures such as

tables
• Normally do not support JOIN operations
• Not fully guaranteed by ACID
• Many of them are Open Source

36

A little bit of history

1970 1980 1990 2000 2010

Codd's
Relational
Model

BigTable
Paper

Dynamo
Paper

Term
NoSQL

Howard Dresner
proposes the term

Business
Intelligence

37

Types of NoSQL databases

Key / Value Columnar Documents Graphs

38

Size vs. Functionality

> 90% of use cases
Relational

Key - Value

Columnar

Documents

 Graphs

Functionality

Scalability

(*) Billions of nodes
and relations

39

Vertical and horizontal scaling

CLUSTER

NODE

VERTICAL SCALING HORIZONTAL SCALING

40

CAP Theorem

● Requirements for distributed databases

41

CAP Theorem

42

Agenda

● Material
● Use case
● Relational Databases
● NoSQL
● Riak
● Apache Cassandra
● MongoDB
● Neo4j

43

Riak

● Developed by Basho Technologies in Erlang
● Inspired by Amazon Dynamo
● Horizontal Distribution - Fault Tolerant
● Prioritizes availability - Tunable consistency
● No master node - No single point of failure
● Querys - Provides a REST API over HTTP
● Drivers in multiple languages - Java, Python, Ruby, etc.
● Storage options - Memory, disk or both.

44

API REST

45

Key and Value

● It's the most basic structure

46

Key and Value

● For example:
● Key: Address
● Value: Tenant

47

Buckets

● They allow to separate the same key according
to a context

● Example: Streets

48

Data distribution in Riak

● Riak is kept available by distributing the data
between different nodes

● There are 2 styles of layout ...

49

Data distribution in Riak

● Replication

50

Data distribution in Riak

● Partitioned

51

Data distribution in Riak

● Riak uses Replication + Partitioning

52

Hash function

53

The Riak Ring – The Cluster

54

The Riak Ring – The Cluster

55

Hash function

56

The Riak Ring – Replication

“favorite”

57

The Riak Ring – Replication

“favorite”

Replicated
to vnodes

Replicated
to nodes

58

Consistence vs Disponibility

59

N/R/W

● N - Number of nodes in which the information is
replicated

60

N/R/W

● W - Number of nodes to be written to before the
operation is considered successful

61

N/R/W

● R - Number of nodes to be read from before
returning the value

62

Riak Data Types

63

Handling conflicts can be complex

https://riak.com/products/riak-kv/riak-distributed-data-types/index.html?p=10947.html

64

Handling conflicts can be complex

65

Handling conflicts can be complex

66

Riak Secundary Index

67

CRUD operations in Riak

● Inserting / Changing a key

68

CRUD operations in Riak

● Reading a key

69

CRUD operations in Riak

● Deleting a key

70

Riak - HandsOn

71

Use Cases

● Simple applications requiring high performance
in read/write operations

● Applications that need the database to be
always available

● Serving ads to web / mobile applications
● User preferences
● Session Storage

72

Agenda

● Material
● Use case
● Relational Databases
● NoSQL
● Riak
● Apache Cassandra
● MongoDB
● Neo4j

73

Apache Cassandra

● Developed in java by Facebook and donated to the
Apache Foundation in 2008

● It is based on a key/value model by storing several
columns per key.

● Inspired by Amazon's Dynamo (Same as Riak) and
Google's BigTable (Column families)

● There's no central controller. No single point of failure
● Querys: CQL Language - Similar to SQL
● Compatible with Hadoop and Spark
● Supports multiple data centers
● Linear scalability

74

Architecture - Writing (W = 3)

75

Architecture - Reading

76

Cassandra Cluster Multiple DataCenters

77

Cassandra Cluster Multiple DataCenters

78

BigTable

● Data is stored in tables (Column Families)
● Tables are stored in separate databases (Keyspaces)
● Every table must have a primary key (Partition Key)
● Additionally a table can have composite keys

79

Remembering the Key - Value model

Key Value

TIMESTAMP

80

BigTable

Key Value

Column 1 Column 2 Column 3

TIMESTAMP

Value

TIMESTAMP

Value

TIMESTAMP

81

Key Value Value Value

Column 1 Column 2 Column 3

Family of Columns = TABLE

Partition KEY

TIMESTAMP TIMESTAMP TIMESTAMP

BigTable

82

Key
Value Value Value

Composite Key Column 2 Column 3
Partition KEY

Value Value Value

Composite Key Column 2 Column 3

TIMESTAMP TIMESTAMP TIMESTAMP

TIMESTAMP TIMESTAMP TIMESTAMP

BigTable

83

Partition Key vs Composite Key

84

Cassandra Query Language CQL

● It looks like SQL but is much more limited
●No JOINS
●No GROUP BY
●No ORDER BY

85

Cassandra - HandsOn

86

Use Cases

● Applications requiring very high real-time writing
capabilities

● Business Intelligence systems that require a very fast
database reading

● Decentralized applications that need to store large
amounts of information

● Smart cities. Sensors and monitoring
● Content Delivery Network (CDN) - Highly distributed
static content servers

87

Agenda

● Material
● Use case
● Relational Databases
● NoSQL
● Riak
● Apache Cassandra
● MongoDB
● Neo4j

88

MongoDB

● It is a document-oriented database (Key Collections /
value)

● It is very flexible in structuring the data
● Querys: Javascript with its own API based on high
capabilities for information querying

● It has geospatial characteristics
● Prioritizes consistency over availability
● Master / Slave type replication
● Scale horizontally thanks to Sharding
● There is a connector for BI tools
● Compatible with Hadoop and Spark

89

Nomenclature

90

Replication - Scale the readings

91

Replication

92

Replication

93

Replication

94

Sharding- Scale the scriptures

95

Complete map

96

Document

Key 1 Value 1

Key 2 Value 2

Key 3 Value 3

Key 4 Value 4

97

Document

Key 1

Value

Key 2

Value

Key 3

Value

Key 4

ValueDocument

98

Collection

Key 1

Value

Key 2

Value

Key 3

Value

Key 4

ValueDocument 1

Value Value Value ValueDocument 2

Value Value Value ValueDocument n

99

Collection

Key 1

Value

Key 2 Key 3

Value

Key 4

ValueDocument 1

Value Value ValueDocument 2

Value ValueDocument n

100

Documents

● The documents correspond to native data types in most
programming languages.

● The ability to include other documents and arrays within
the documents reduces the need for joins.

● Dynamic schemes allow support for any data structure in
a collection

101

Document

102

CRUD operations

● Data insertion

103

CRUD operations

● Querys

104

CRUD operations

●Ordered queries

105

CRUD operations

● Queries with projection

106

CRUD operations

● Update

107

CRUD operations

● Deletion

108

CRUD operations

● Aggregation - Equivalent to GROUP BY

https://docs.mongodb.com/manual/reference/sql-aggregation-comparison/

109

Converting from SQL to MongoDB

https://www.google.com/search?q=sql+to+mongodb

110

Converting from SQL to MongoDB

https://docs.mongodb.com/manual/reference/sql-comparison/

https://docs.mongodb.com/manual/reference/sql-comparison/

111

Schematic design

112

Scheme design

113

MongoDB Client

https://robomongo.org/download

114

MongoDB - HandsOn

115

Use Cases

● Any application that needs to use semi-structured data
● Applications with high volume of information
● Document and Content Management Systems
● Rapid development / Agile methodologies
● Machine-generated data (logs, sensors, etc.)
● It is not appropriate when there is more than one data
center

116

Agenda

● Material
● Use case
● Relational Databases
● NoSQL
● Riak
● Apache Cassandra
● MongoDB
● Neo4j

117

Neo4j

● It is a network oriented database (stores information as
nodes and relationships)

● Implemented in java in 2010
● Querys: Proprietary language called Cypher that allows
you to explore connections between information

● REST Interface
● It is not necessary to declare a scheme
● Prioritizes consistency and availability
● ACID

118

Graphite Theory - Königsberg Bridges

Leonhard Euler
1707-1783

119

Graphite Theory - Königsberg Bridges

120

Nodes and Relations
● A network is built the way people really think
● The nodes or vertices represent entities
● The edges represent relationships

121

Properties

122

Tags

Person

Person

Book

123

Searching for information

● Locate a node and explore other nodes through their
relationships

124

Searching for information

● Locate a node and explore other nodes through their
relationships

● or we can identify patterns

Alice

John

Pedro

125

Patterns

Alice

John

Pedro

126

Patterns

Alice

John

Pedro

127

Algorithms - The shortest path

Alice

John

Alex

Sara

128

Algorithms - PageRank

129

Cypher
● Language with a philosophy similar to SQL
● Allows you to create nodes and/or relationships, maintain
them or delete them

● Finding patterns
● Execute algorithms implemented in the DB

130

Neo4j

131

Neo4j - Visualization

132

Neo4j - HandsOn

133

Use Cases

● Optimal for applications that need to look for
relationships in information

● Social networking
● Fraud detection by identifying patterns
● Real-time recommendations
● Data center management - devices, users, etc.
● Master Data Systems Management
● Identity and access management

134

Panama's papers

135

Panama's papers

136

Panama's papers

137

Panama's papers

138

Einstein's Riddle

139

Einstein's Riddle

● This seemingly simple Einstein's riddle is based on a
number of considerations and one question.

● These are about a group of five people of different
nationalities, with five different pets, consuming a certain
brand of tobacco, drinking a certain drink and living in a
different house entirely in each case.

Who owns the fish?

140

Einstein's Riddle

● The Englishman lives in the red house.
● The Swede has a dog.
● The Dane drinks tea.
● The Norwegian lives in the first house.
● The German smokes Prince.
● The green house is immediately to the left of the white
one.

● The owner of the green house drinks coffee.

141

Einstein's Riddle

● The person who smokes Pall Mall breeds birds.
● The owner of the yellow house smokes Durnhill.
● The man who lives in the house downtown drinks milk.
● The man who smokes Blends lives next door to the man
who has a cat.

● The man who has a horse lives next to the man who
smokes Dunhill.

● The man who smokes Bluemaster drinks beer.
● The man who smokes Blends is a neighbor of the man
who drinks water.

● The Norwegian lives next door to the blue house.

142

THANKS FOR YOUR ATTENTION
Daniel Villanueva Jiménez

daniel.villanueva@immune.institute

@dvillaj

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142

